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FINITELY FIXED IMPLIES 
LOOSELY BERNOULLI, A DIRECT PROOF 

BY 

JOHN C. KIEFFER ~ AND MAURICE RAHE 

ABS'r RAC'/ 

As defined in the literature, a process is loosely Bernoulli if a certain property 
P(e) is satisfied for every e > 0. Using only facts about stationary joinings of 
processes, it is shown that given e > 0 there exists 8 > 0 such that whenever two 
processes are separated by less than ~ in the f-metric and one of them is loosely 
Bernoulli, the other is "almost" loosely Bernoulli in the sense that P(e) is 
satisfied. As easy corollaries, one has that loosely Bernoulli processes are closed 
in the f-metric and that finitely fixed processes are loosely Bernoulli. 

1. I n t roduc t ion  

It was shown in [3] tha t  one  can give a very shor t  p roo f  of the  fact that  

Orns t e in ' s  cond i t ion  " f in i te ly  d e t e r m i n e d "  impl ies  "ve ry  weak  B e r n o u l l i "  based  

on the fo l lowing t h e o r e m .  

THEOREM [3; co ro l l a ry  1]. Let B be a finite set, and let U = {U~}7=-~ and 

V ={V~}~_~ be stationary stochastic processes with values in the space B ~ of 

doubly infinite sequences from B. Suppose, moreover, that U is very weak 

Bernoulli. Then if the processes U and V are within e in the d-metric, there exists a 
positive integer m such that 

Edm (dist V?, d i s t ( V ?  I V ~  < 2e 

where E indicates expectation, dist  V~' denotes the distribution of V7 "= 

( V , . . . ,  V,~ ) and dist(  V? I V~ ~) denotes the conditional distribution of V?  given 

the past V~ = ( . . . ,  V ~, Vo), considered as a function of V~ 

In this ar t ic le ,  we de r ive  the  c o r r e s p o n d i n g  resul t  for  the  f - m e t r i c  and  app ly  it 

to show that  f ini tely fixed impl ies  loose ly  Bernoul l i .  F i rs t ,  for  the  benef i t  of those  
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readers who are familiar with the relevant d-concepts but who may not be 
familiar with [3], we provide a thumbnail sketch of the proof of the above 
theorem as a reference point in following the rather more involved f-arguments 
which follow. The necessary f-definitions and notation are presented in the next 
section, followed by the proof that FF ~ LB in w and finally in w the proof of 
the main result: the f-version of the above theorem. 

SKETCH OF PROOF. The result depends on two facts. First, we can assume U 
and V arise from a jointly stationary process (U, V) such that Ed~(Uo, Vo)= 
d(dist U, dist V). Second, by a result of Rohlin 16, p. 66] in the jointly stationary 
process, no additional information is gained about Uo from the remote past V-k, 
provided we know the total past U?-L:limj--~h(Uo[ UT_LVT_~)= h(Uo[ U_-L), 
where h represents entropy. From this it follows that 

d,(dist(Uo[ U:LV:~),dist(Uo[ U:~))-->O as j-->~. 

Since U is VWB, we choose k so that Edk (dist U~, dist(U~ [ U~ < e. Let rt 
represent the j-fold product of the distribution U~ with itself. By using the 
sub-additivity of the d-metric over the disjoint blocks of length k and then 
applying stationarity [3], we conclude that 

j - 1  

E~k (dist U{ k, ,r) _-< j - '  ~ Edk (dist(Ui~++~ I U~k), dist U~) 
i=1 

j - 1  

= j-1 ~ Edk (dist(V~ [ V~ dist V~) 
i~1 

which approaches Edk (dist(U~ [ U~ dist U~) as j ---> oo. 
Similarly, 

j - I  

E~k (dist( U{ k ] V~ V~174 ~r) _-< j-1 ~ Edk (dist( U~' [ U~ V=~), dist Vlk), 
i=0  

which, by our earlier remarks, approaches Edk (dist(U~ [ U~174 dist U~) as j --> oo. 
Hence by the triangle inequality, for j sufficiently large, 

(0) Edsk (dist U{ k, dist(V{k [ U~174 V~ < 2e. 

On the other hand, by definition of the d-distance we conclude that 

Edik (dist U{ k, dist V{ k) _-< Edsk (U{ k, V{ k) = Edl(Uo, Vo) < e. 

Similarly, we get that 

E~k (dist(U{ k ] U~174 V~ dist(V{ k [ U ~ V~174 < e. 
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By the triangle inequality, in (0) we can replace U{ k by V{ k, provided we replace 

" 2 e "  by "4e" .  Dropping the condition on U ~  we get our result. 

For the f-case, the approach is similar but more involved, since in the 

stationary joining which realizes the I-distance between U and V, the processes 

U and V are not themselves jointly stationary. Instead, U and V must be 

recovered from the jointly stationary processes 0, f '  by the non-stationary 

procedure of arbitrarily assigning a time-zero and concatenating O, f '  outputs. 

Conversely, the transition from U, V to O, V must be effected by means of 

marker processes Mu, My which delineate the beginnings of blocks of U, V 

outputs which are paired in the I-match. 

2. Preliminaries 

For S countable, let S ~ denote the set of all infinite sequences x = (x,)7__~ 

from S. We make S | a measurable space by adjoining the usual product 

~-algebra generated by the partition of S into discrete points. By a process we 

mean a measurable map X from some measurable space fl  to SL If X : ~---~ S ~ 

is a process and i is an integer, X~ denotes the map from 1) to S such that 

X~ (to)= X(to) ,  to E l ) .  For integers m, n with m =< n, X~ denotes the function 

(X, ,  X,,+1," ", X.); X~_| the function ( . . . ,  X,-1, X,); and if n > 0, X" denotes 

( X , - . . , X , ) .  If ( f~,~)  is a measurable space, let ~(l~) be the family of all 

probability measures on 5~. If X , - . - , X ,  are measurable maps from ~q to 

measurable spaces S 1 , " ' , S , ,  respectively, and if P E ~ ( f ~ ) ,  then 

P(. IXI , . . . ,X , )  denotes a map from fl  to ~( l ) )  such that for each set E E ~, 

the random variable P(E [ X~,. �9 X,) serves as a conditional expectation under 

P of the characteristic function of E given the sub-o'-algebra of ~ generated by 

X , -  �9 -, Xn. If in addition X is a measurable map from lq to a measurable space 

(S,~),  then P• IX,,. . . ,  X.) denotes the .~(S)-valued map defined on ~ such 

that for each E E 5e we have 

pXtE I X , , . . . , X . ) = P ( { X  E E } I X , , . . . , X , ) .  

The symbol px  denotes the distribution of X, i.e., the probability measure on S~ 

such that pX(E) = P(X E E), E E 8". 
For a finite set R, let/~ = U~.~ R", the collection of all finite sequences from 

R. Since R is countable, we may apply the comments of the paragraph above 

and consider the measurable space /~' ,  processes ) ( :  f~--*/~', etc. 

For the rest of the paper, fix a finite set B. Let Ts denote the shift on B| Ta, 

the shift on/3| We shall deal with distributions on B | a n d / ~  which are ergodic 

and have finite entropy. 
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We shall consider two versions of the f-metric, which is described in detail in 

[1, 2, 7]. For b E/3, let l(b) denote its length. Define f :/3 • ~ [0, oo) so that 

f(b, c) = [l(b) + l(c) - 21 (longest monotone match in b, c)]/2. 

It is easily shown that f is a metric. For n = 1, 2 , . . . ,  define f, :/~" x/3"  ~ [0, oo) 

so that f . (b ,c)=f([~,6)/n,  where b, ,~ are the elements in/~ obtained from b, c 

by concatenating. Let f. be the restriction of f. to B n x B ,. The sequence {f, } is 

subadditive in the following sense: let (x~, . . . ,x , . ) ,  ( y ~ , . - . , y ~ ) E / ~ "  x / ~ " ,  

then 

i - 1  

~m((X,,' ' ' ,Xi,.,),(y,, '" ", y,m))~ E f,,, ((Xj,.+,,"" ", Xi,,,+,,,), (yj~+,,"" ", yj,.+,,,)). 
j=O 

Similarly for the sequence {f,}. If A is countable and p : A "  x A"---. [0,oo) is 

given, then if g., v are probability measures on A ", the symbol p. (tz, u) denotes 

infix.v) Ep, (x, y), where E indicates the expectation and the infimum is over all 

random variables X, Y which are A "-valued with dist X = Iz, dist Y = v. If v,/z 

are stationary probability measures on B ", [(Iz, u), the f-distance between 

them, is defined to be l i m s u p , ~  L(tz . ,  u,), where p.., u, are the n th order 

marginal distributions of Iz, u, respectively. 

Finally, if V is an ergodic process with state space B and distribution v, we say 

that v is loosely Bernoulli (LB) [1, 2] if for every e > 0 there exists an integer m 
such that Evf (v  v., v"" (. ] V~ < e. 

3. Results 

THEOREM. Let Y, X be ergodic processes with state space B and distributions l.t, 

v. Let Ix be LB. Then if f(/~, v ) <  e 2, ]:or all k sufficiently large we have 
E, fk(v  x~, vX~( �9 [ X ~  - e). 

COROLLARY. If {/.t,}7=,,/.t are TB-ergodic and if each i~, i = 1 ,2 , . . .  is LB and 

if the p~ converge to ~t in the f-metric, then ix is LB. 

DEFINITION. We say that a TB-ergodic measure/~ is finitely fixed (FF) [7] if 

convergence of any sequence {~t~} of Ts-ergodic measures to p. both weakly and 

in entropy implies convergence of the /~ to /1. in the I-metric. 

COROLLARY. If  a T~-ergodic measure ix is FF, then IX is LB. 

PROOF. The m th order Markov approximants of p. converge to /~ weakly 

and in entropy and are LB. Hence p. is LB. 
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REMARK. The conclusions of the two corollaries are already known. How- 

ever, as Weiss points out [7, p. 0.2, p. 6.5], the proof of these facts is 

unsatisfactory from an aesthetic point of view, since it involves a detour through 

the equivalence theorem and the d result of Ornstein and Weiss that finitely 

determined processes are very weak Bernoulli [5]. Our proof uses only proper- 

ties of the stationary joining discussed in [7, prop. 2.6] and is a modification of a 

recent short proof of the Ornstein-Weiss result [3]. 

4. In this section we present the proof of the main theorem. 

In the following if/.t, u are probability measures on a common space, I# - ~' I 
denotes the total variation distance between them. 

LEMMA 1. Let P, Q be probability measures on a measurable space (I), ~), 
where ~ is countably generated. Let ~ be any sub-tr-field of ~. Then 

EPIP('I  ~ ) -  Q( ' /  ~)IN41p - Of .  

PROOF. Routine. 

As a corollary we get 

LEMMA 2. Let P, Q, (fl, 8~), and ~ be as in Lemma 1. Let X1, ' . . ,Xk be 
measurable functions from l~ to B. Then 

IEPfk(PX~,pxk( �9 I ~d))- Eofk (O x~, OXk ( �9 I ~d))l_-< 61P - O I. 

PROOF. Clearly 

[fk(px,,px~(. I ~))_  fk(Q• QX~(. I ~d))l 

<= fk(eX~, OXk)+ f~(PX~(" l ~), OX~(. l ~)). 

From Lemma 1 we get that 

[Epfk(P•215 �9 I ~ ) ) - E o f k ( o  xk, Ox ' ( .  I ~))l 

~Ep I fk(Px ' ,px ' (  �9 I ~ ) ) - f k  (Q x', QXk(. I~))  I 

+ I EPf~ (o  "~, o ~ ' (  �9 I ~ ) ) -Eo /~  (o  ~', o " '  (. I~))1 

< = I P - Q I + 4 1 P - O I + I P - Q I = 6 1 P - Q I .  

Here we used the fact that the total variation distance upper bounds the 

f-distance (since it upper bounds the d-distance). 

LEMMA 3. Let A be a countable set. For each n = 1 ,2 , . . . ,  let a metric 
#, : A n • A"  ~ [0, oo) be given. Suppose the sequence {pn} is subadditive. Let X, Y 
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be jointly stationary processes defined on (l~, ~, P), where X has state space A. 
Then for any m = 1 , 2 , . . .  we have 

lira sup Ep,,, (px,-, px,-  (. ] XO , yO| <= 2Ep,~ (px- ,  p x .  (. I X~ 

(1) 
+ lim sup Ep,~ (pxm (. I X%), p x -  (. I X ~  YZ~)). 

i . -~o 

Moreover, if A is finite and pn (x, x ) = 0 for every x ~ A ~, then the second term on 

the right-hand side of (1) is zero. 

PROOF. See [3, proof of theorem 1]. 

The following result is easily proved using the fact that f and f are metrics. 

LEMMA 4. Let (J be a stationary process on (f~, ~:, P) with state space B. Let U 

be the nonstationary process with state space B obtained by "concatenating" the 0 
output, i.e., U~ is obtained by concatenating 01, 0 2 , ' " ,  while U~174 comes from 
�9 " ,  0-1, Uo. Then for any n = 1 , 2 , . . .  and any sub-tr-fields ~1, ~2 we have 

IE/m(p~ l ~ , ) , e~  [ ~2))-Eft, (PU" (. I ~,), P~ ' (  �9 I < E l ( U o ) -  1. 

Finally, we come to the main result. Let {X~} denote the projections from B"  

to B. 

THEOREM. Let Iz, v be ergodic on B | Let f(tz, v ) < e  2. Let tz be loosely 
- -  g k  

Bernoulli. Then for all k sufficiently large we have Evfk(v  , v x ' (  �9 IX~174 
8 4 E / ( 1  - c ). 

PROOF. By inequality (1), with Y a trivial process, all we need to is find some 

k for which E~fk(v x*, vX*( �9 [X~174 - e). 
By [7, proposition 2.6] there exists a probability space (fl, ~,  P)  and processes 

U, ~', U, V, Mu, My defined on it such that the following conditions hold: 

(a) U, (z have state space/3;  U, V have state space B and are obtained from 

U, Q respectively, by concatenation as in Lemma 4; Mu, My have state space 

{0, 1} and (Mu), = 1 if and only if U~ is the left-most entry of the ~ in which it 

lies; similarly for My, vis-a-vis V, ~', 

(b) U, Q are jointly stationary; IP" -v l<2e ;  and IP'O'M~'-A ]<2e, for 
some stationary )t on B ~ x  {0, 1} ~ with B'-marginal /z, 

(c) El(Uo) = El(fVo) < 1/(1 - e), and 
(d) with probability one, for each i, the outputs ~ ,  ~ begin with the same 

element of B. 
Let )~, I7" be the processes which are the projections from B | x {0, 1}*---~ B ~, 
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{0, 1} ~ respectively. Let z represent the joint distribution r = ptu.M,;. By Lemma 
2, for any m, 

Ef,,(PU',PU'(" [ U~176 Ef,,(z~=, ~'~'(" [ ~~ Y~ 

< El,,  (h ~=, h,~-(.  I ,~.o_=, ~.0_q)+ 61 z - x  I. 

From condit ion (b) above, l~- -  h l<2e ,  so the second term on the right is 
bounded by 12e. As m gets large, the first term goes to zero by Lemma 3. (To see 
this, note that since B is finite, the second term on the right side of ( I)  is 
identically zero. The first term on the right side of ( I )  goes to zero since/x is LB.)  
Hence we see that we may fix m so that 

(2) Ef,,(PU=,PU'( �9 I U~174176 12e. 

Now Lemma 4 yields that 

e ~  I o~ -< e= ' (  �9 l o~ + =I( i  - e), 

since by hypothesis (c) El ( / 3 ) <  11(I - e ). Since the first term is bounded by 12e 
from (2), we conclude that 

(3) E[,,(P~176 I 0~ < 13el( l  - e). 

Since the entropies H(Uo) and H(~'o) are finite [4, theorem 4] and since 
(U, ~') are jointly stationary, theorem 6.2 [6, p. 66] assures us that the 
conditional mutual information I(U", f'-LI 0~_=)---~0 as i gets large. Hence 

lim sup El,, (PU= (. I 0o| p v- (. [ 0o| Q_~)) = 0 
i--- ,0 

by exactly the same argument  ~given in the proof of theorem 1 of [3]. Thus since 
E l ( U o ) - l < e / ( 1 - e )  by condition (c) above, it follows immediately from 
Lemma 4 that 

(4) lim sup Et,, (P o- (. [ 0!.| P o- (. [ 0~ Q--~)) < =/(I - = ). 

Therefore,  by reapplying Lemma 3 for k any sufficiently large multiple of m, 
we get that 

(5) Elk (P o~, p ok (. [ 0o_~, Q0_| < 27e/(1 - e ). 

(The terms on the right-hand side of Equation (1) are bounded above in (3) and 
(4).) 

On the other hand, both Efk(P~ [ 0 0 ,  Qo_| I 00_., Qo| and 
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Elk (pOk, pe~) are dominated by E/k (O k, 9 k ) _--< E[(l(Uk ) + l(  V k ) - 2k )/(2k )] < 
e / (1 -  e). From these two bounds and (5), the triangle inequality yields that 

(6) Elk (nek, n~k(. I 0~ Qo| < 29e/(1 -- e). 

Since Elk (PV*, nv*(. ] VoQ) <_ Elk (nv*, pv~(. ] (zo)) and since Lemma 4 
yields Efk (P v,, p v, (. I Qo)) =< E/, (P ~, P ek(. I I;'~ + e/(1 - e), we apply (6) 
to conclude that 

(7) Elk (evk, pV~(. ] V0_| < 30e/(1 - e). 

Finally, by Lemma 2, 

E,'fk( vx~, vx'(" [X~174 pv*(" I V~174 Pv - v] 

_-- 42e/(1 - e ) ,  

since the term IP v - v I is less than 2e by condition (b) above and the previous 
term is bounded in (7). 
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