FINITELY FIXED IMPLIES LOOSELY BERNOULLI, A DIRECT PROOF

BY

JOHN C. KIEFFER' AND MAURICE RAHE

ABSTRACT

As defined in the literature, a process is loosely Bernoulli if a certain property $P(\varepsilon)$ is satisfied for every $\varepsilon > 0$. Using only facts about stationary joinings of processes, it is shown that given $\varepsilon > 0$ there exists $\delta > 0$ such that whenever two processes are separated by less than δ in the \bar{f} -metric and one of them is loosely Bernoulli, the other is "almost" loosely Bernoulli in the sense that $P(\varepsilon)$ is satisfied. As easy corollaries, one has that loosely Bernoulli processes are closed in the \bar{f} -metric and that finitely fixed processes are loosely Bernoulli.

1. Introduction

It was shown in [3] that one can give a very short proof of the fact that Ornstein's condition "finitely determined" implies "very weak Bernoulli" based on the following theorem.

THEOREM [3; corollary 1]. Let B be a finite set, and let $U = \{U_i\}_{i=-\infty}^{\infty}$ and $V = \{V_i\}_{i=-\infty}^{\infty}$ *be stationary stochastic processes with values in the space B^{*} of doubly infinite sequences from B. Suppose, moreover, that U is very weak Bernoulli. Then if the processes U and V are within* ε *in the* \overline{d} *-metric, there exists a positive integer m such that*

 $E\bar{d}_m$ (dist V_1^m , dist($V_1^m | V_{-\infty}^0$)) < 2ε

where E indicates expectation, dist V_1^m *denotes the distribution of* V_1^m = (V_1, \dots, V_m) and $dist(V_1^m | V_{-\infty}^0)$ denotes the conditional distribution of V_1^m given *the past* $V^0_{-\infty} = (\cdots, V_{-1}, V_0)$ *, considered as a function of* $V^0_{-\infty}$ *.*

In this article, we derive the corresponding result for the \bar{f} -metric and apply it to show that finitely fixed implies loosely Bernoulli. First, for the benefit of those

t Research supported by NSF Grant MCS-78-21335 and the Joint Services Electronics Program under Contract N00014-79-C-0424.

Received August 5, 1980 and in revised form May 12, 1982

readers who are familiar with the relevant \overline{d} -concepts but who may not be familiar with [3], we provide a thumbnail sketch of the proof of the above theorem as a reference point in following the rather more involved \bar{f} -arguments which follow. The necessary \vec{f} -definitions and notation are presented in the next section, followed by the proof that $FF \Rightarrow LB$ in §3, and finally in §4 the proof of the main result: the \bar{f} -version of the above theorem.

SKETCH OF PROOF. The result depends on two facts. First, we can assume U and V arise from a jointly stationary process (U, V) such that $Ed_1(U_0, V_0)$ = \overline{d} (dist U, dist V). Second, by a result of Rohlin [6, p. 66] in the jointly stationary process, no additional information is gained about U_0 from the remote past $V_{-\infty}^{-i}$, provided we know the total past $U_{-\infty}^{-1}$: $\lim_{i\to\infty} h(U_0 | U_{-\infty}^{-1} V_{-\infty}^{-i}) = h(U_0 | U_{-\infty}^{-1}),$ where h represents entropy. From this it follows that

$$
\bar{d}_1(\text{dist}(U_0 \big| U_{-\infty}^{-1} V_{-\infty}^{-j}), \text{dist}(U_0 \big| U_{-\infty}^{-1})) \to 0 \quad \text{as } j \to \infty.
$$

Since U is VWB, we choose k so that $E\bar{d}_k$ (dist U^k_1 , dist $(U^k_1 | U^0_{-\infty})$) $\lt \varepsilon$. Let π represent the *j*-fold product of the distribution U_1^k with itself. By using the sub-additivity of the \bar{d} -metric over the disjoint blocks of length k and then applying stationarity [3], we conclude that

$$
E\bar{d}_{jk} (\text{dist } U_1^k, \pi) \leq j^{-1} \sum_{i=1}^{j-1} E\bar{d}_k (\text{dist}(U_{ik}^{k+k} | U_1^k), \text{dist } U_1^k)
$$

= $j^{-1} \sum_{i=1}^{j-1} E\bar{d}_k (\text{dist}(U_1^k | U_{1-ik}^0), \text{dist } U_1^k)$

which approaches $E\bar{d}_k$ (dist($U_1^k | U_{-\infty}^0$), dist U_1^k) as $j \to \infty$.

Similarly,

$$
E\bar{d}_{jk}(\text{dist}(U_1^{jk} \mid U_{-\infty}^0 V_{-\infty}^0), \pi) \leq j^{-1} \sum_{i=0}^{j-1} E\bar{d}_{k}(\text{dist}(U_1^{k} \mid U_{-\infty}^0 V_{-\infty}^{-ik}), \text{dist } U_1^{k}),
$$

which, by our earlier remarks, approaches $E\bar{d}_k$ (dist($U_1^k | U_{-\infty}^0$), dist U_1^k) as $j \to \infty$. Hence by the triangle inequality, for j sufficiently large,

(0)
$$
E\overline{d}_{jk}(\text{dist }U_1^{jk},\text{dist}(U_1^{jk} \mid U_{-\infty}^0 V_{-\infty}^0)) < 2\varepsilon.
$$

On the other hand, by definition of the \overline{d} -distance we conclude that

$$
E\bar{d}_{jk}(\text{dist }U_1^{jk}, \text{dist }V_1^{jk}) \leq E d_{jk}(U_1^{jk}, V_1^{jk}) = E d_1(U_0, V_0) < \varepsilon.
$$

Similarly, we get that

$$
E\bar{d}_{jk}(\text{dist}(U_1^{jk}\big\vert U_{-\infty}^0 V_{-\infty}^0),\text{dist}(V_1^{jk}\big\vert U_{-\infty}^0 V_{-\infty}^0))\leq \varepsilon.
$$

By the triangle inequality, in (0) we can replace U_{i}^{k} by V_{i}^{k} , provided we replace " 2ε " by "4 ε ". Dropping the condition on $U^0_{-\infty}$, we get our result.

For the \bar{f} -case, the approach is similar but more involved, since in the stationary joining which realizes the \bar{f} -distance between U and V, the processes U and V are not themselves jointly stationary. Instead, U and V must be recovered from the jointly stationary processes \tilde{U} , \tilde{V} by the non-stationary procedure of arbitrarily assigning a time-zero and concatenating \tilde{U} , \tilde{V} outputs. Conversely, the transition from U, V to \tilde{U} , \tilde{V} must be effected by means of marker processes M_U , M_V which delineate the beginnings of blocks of U, V outputs which are paired in the \bar{f} -match.

2. Preliminaries

For S countable, let S^{*} denote the set of all infinite sequences $x = (x_i)_{i=-\infty}^{\infty}$ from S. We make S^* a measurable space by adjoining the usual product σ -algebra generated by the partition of S into discrete points. By a process we mean a measurable map X from some measurable space Ω to S^* . If $X : \Omega \to S^*$ is a process and i is an integer, X_i denotes the map from Ω to S such that $X_i(\omega) = X(\omega)_i$, $\omega \in \Omega$. For integers m, n with $m \leq n$, X_m denotes the function $(X_m, X_{m+1}, \dots, X_n); X_{-\infty}^n$, the function (\dots, X_{n-1}, X_n) ; and if $n > 0$, Xⁿ denotes (X_1, \dots, X_n) . If (Ω, \mathcal{F}) is a measurable space, let $\mathcal{P}(\Omega)$ be the family of all probability measures on \mathcal{F} . If X_1, \dots, X_n are measurable maps from Ω to measurable spaces S_1, \dots, S_n , respectively, and if $P \in \mathcal{P}(\Omega)$, then $P(\cdot | X_1, \dots, X_n)$ denotes a map from Ω to $\mathcal{P}(\Omega)$ such that for each set $E \in \mathcal{F}$, the random variable $P(E | X_1, \dots, X_n)$ serves as a conditional expectation under P of the characteristic function of E given the sub- σ -algebra of $\mathcal F$ generated by X_1, \dots, X_n . If in addition X is a measurable map from Ω to a measurable space (S, \mathcal{S}) , then $P^{\times}(\cdot | X_1, \dots, X_n)$ denotes the $\mathcal{P}(S)$ -valued map defined on Ω such that for each $E \in \mathcal{S}$ we have

$$
P^X(E \mid X_1,\cdots,X_n)=P(\lbrace X \in E \rbrace \mid X_1,\cdots,X_n).
$$

The symbol P^x denotes the distribution of X, i.e., the probability measure on \mathcal{S} such that $P^X(E) = P(X \in E)$, $E \in \mathcal{G}$.

For a finite set R, let $\hat{R} = \bigcup_{n=1}^{\infty} R^n$, the collection of all finite sequences from R. Since R is countable, we may apply the comments of the paragraph above and consider the measurable space \hat{R}^* , processes $\hat{X}: \Omega \to \hat{R}^*$, etc.

For the rest of the paper, fix a finite set B. Let T_B denote the shift on B^* ; T_B , the shift on \hat{B}^* . We shall deal with distributions on B^* and \hat{B}^* which are ergodic and have finite entropy.

We shall consider two versions of the \bar{f} -metric, which is described in detail in [1, 2, 7]. For $b \in \hat{B}$, let $l(b)$ denote its length. Define $f : \hat{B} \times \hat{B} \rightarrow [0, \infty)$ so that

$$
f(b, c) = [l(b) + l(c) - 2l \text{ (longest monotone match in } b, c)]/2.
$$

It is easily shown that f is a metric. For $n = 1, 2, \dots$, define $\hat{f}_n : \hat{B}^n \times \hat{B}^n \to [0, \infty)$ so that $\hat{f}_n(b,c) = f(\hat{b},\hat{c})/n$, where \hat{b}, \hat{c} are the elements in \hat{B} obtained from b, c by concatenating. Let \bar{f}_n be the restriction of \hat{f}_n to $B^n \times B^n$. The sequence $\{\hat{f}_n\}$ is subadditive in the following sense: let (x_1, \dots, x_{im}) , $(y_1, \dots, y_{im}) \in \hat{B}^{im} \times \hat{B}^{im}$, then

$$
\hat{f}_{im}((x_1,\dots,x_{im}),(y_1,\dots,y_{im}))\leq \sum_{j=0}^{i-1}\hat{f}_m((x_{jm+1},\dots,x_{jm+m}),(y_{jm+1},\dots,y_{jm+m})).
$$

Similarly for the sequence $\{\bar{f}_n\}$. If A is countable and $\rho: A^n \times A^n \to [0,\infty)$ is given, then if μ , ν are probability measures on Aⁿ, the symbol $\rho_n(\mu, \nu)$ denotes $\inf_{(x,y)} E_{p_n}(x, y)$, where E indicates the expectation and the infimum is over all random variables X, Y which are Aⁿ-valued with dist $X = \mu$, dist $Y = \nu$. If ν , μ are stationary probability measures on B^{∞} , $\bar{f}(\mu, \nu)$, the \bar{f} -distance between them, is defined to be $\limsup_{n\to\infty} \bar{f}_n(\mu_n, \nu_n)$, where μ_n , ν_n are the n th order marginal distributions of μ , ν , respectively.

Finally, if V is an ergodic process with state space B and distribution ν , we say that v is loosely Bernoulli (LB) [1, 2] if for every $\varepsilon > 0$ there exists an integer m such that $E_{\nu} \bar{f}(\nu^{\vee m}, \nu^{\vee m}(\cdot \mid V_{-\infty}^0)) < \varepsilon$.

3. Results

THEOREM. Let Y, X be ergodic processes with state space B and distributions μ , *v.* Let μ be LB. Then if $\bar{f}(\mu, \nu) < \varepsilon^2$, for all k sufficiently large we have $E_{\nu} \bar{f}_{k}(\nu^{X^k}, \nu^{X^k}(\cdot | X^0_{-\infty})) < 84\varepsilon/(1-\varepsilon).$

COROLLARY. *If* $\{\mu_i\}_{i=1}^{\infty}$, μ are T_B -ergodic and if each μ_i , $i = 1, 2, \cdots$ is LB and *if the* μ_i *converge to* μ *in the f-metric, then* μ *is LB.*

DEFINITION. We say that a T_B -ergodic measure μ is finitely fixed (FF) [7] if convergence of any sequence $\{\mu_i\}$ of T_B -ergodic measures to μ both weakly and in entropy implies convergence of the μ_i to μ in the \bar{f} -metric.

COROLLARY. If a T_B -ergodic measure μ is FF, then μ is LB.

PROOF. The m_{th} order Markov approximants of μ converge to μ weakly and in entropy and are LB. Hence μ is LB.

REMARK. The conclusions of the two corollaries are already known. However, as Weiss points out [7, p. 0.2, p. 6.5], the proof of these facts is unsatisfactory from an aesthetic point of view, since it involves a detour through the equivalence theorem and the \overline{d} result of Ornstein and Weiss that finitely determined processes are very weak Bernoulli [5]. Our proof uses only properties of the stationary joining discussed in [7, prop. 2.6] and is a modification of a recent short proof of the Ornstein-Weiss result [3].

4. In this section we present the proof of the main theorem.

In the following if μ , ν are probability measures on a common space, $|\mu - \nu|$ denotes the total variation distance between them.

LEMMA 1. Let P, Q be probability measures on a measurable space (Ω, \mathcal{F}) , where $\mathscr F$ is countably generated. Let $\mathscr G$ be any sub- σ -field of $\mathscr F$. Then

 $E_P|P(\cdot| \mathcal{G})-Q(\cdot | \mathcal{G})| \leq 4|P-Q|$.

PROOF. Routine.

As a corollary we get

LEMMA 2. Let P, Q, (Ω, \mathcal{F}) , and \mathcal{G} be as in Lemma 1. Let X_1, \dots, X_k be *measurable functions from* Ω *to B. Then*

$$
|E_P\bar{f}_k(P^{X^k},P^{X^k}(\cdot|\mathscr{G})) - E_O\bar{f}_k(Q^{X^k},Q^{X^k}(\cdot|\mathscr{G}))| \leq 6|P-Q|.
$$

PROOF. Clearly

$$
\begin{aligned} |\bar{f}_{k}(P^{X^{k}},P^{X^{k}}(\cdot\,|\,\mathscr{G})) - \bar{f}_{k}(Q^{X^{k}},Q^{X^{k}}(\cdot\,|\,\mathscr{G}))| \\ &\leq \bar{f}_{k}(P^{X^{k}},Q^{X^{k}}) + \bar{f}_{k}(P^{X^{k}}(\cdot\,|\,\mathscr{G}),Q^{X^{k}}(\cdot\,|\,\mathscr{G})). \end{aligned}
$$

From Lemma 1 we get that

$$
|E_{P}\bar{f}_{k}(P^{X^{k}},P^{X^{k}}(\cdot | \mathcal{G})) - E_{Q}\bar{f}_{k}(Q^{X^{k}},Q^{X^{k}}(\cdot | \mathcal{G}))|
$$

\n
$$
\leq E_{P}|\bar{f}_{k}(P^{X^{k}},P^{X^{k}}(\cdot | \mathcal{G})) - \bar{f}_{k}(Q^{X^{k}},Q^{X^{k}}(\cdot | \mathcal{G}))|
$$

\n
$$
+ |E_{P}\bar{f}_{k}(Q^{X^{k}},Q^{X^{k}}(\cdot | \mathcal{G})) - E_{Q}\bar{f}_{k}(Q^{X^{k}},Q^{X^{k}}(\cdot | \mathcal{G}))|
$$

\n
$$
\leq |P-Q| + 4|P-Q| + |P-Q| = 6|P-Q|.
$$

Here we used the fact that the total variation distance upper bounds the \bar{f} -distance (since it upper bounds the \bar{d} -distance).

LEMMA 3. Let A be a countable set. For each $n = 1, 2, \dots$, let a metric $\rho_n : A^n \times A^n \to [0, \infty)$ *be given. Suppose the sequence* $\{\rho_n\}$ *is subadditive. Let X, Y* *be jointly stationary processes defined on* (Ω, \mathcal{F}, P) *, where X has state space A. Then for any* $m = 1, 2, \cdots$ *we have*

$$
\limsup_{i\to\infty} E\rho_{im}(P^{X^{im}},P^{X^{im}}(\cdot|X^0_{-\infty},Y^0_{-\infty})) \leq 2E\rho_m(P^{X^{m}},P^{X^{m}}(\cdot|X^0_{-\infty})) + \limsup_{i\to\infty} E\rho_m(P^{X^{m}}(\cdot|X^0_{-\infty}),P^{X^{m}}(\cdot|X^0_{-\infty},Y_{-\infty}^{-i})).
$$

Moreover, if A is finite and $\rho_n(x, x) = 0$ *for every* $x \in A^n$ *, then the second term on the right-hand side of* (1) *is zero.*

PROOF. See [3, proof of theorem 1].

The following result is easily proved using the fact that \bar{f} and \hat{f} are metrics.

LEMMA 4. Let \hat{U} be a stationary process on (Ω, \mathcal{F}, P) with state space \hat{B} . Let U *be the nonstationary process with state space B obtained by "concatenating" the* \tilde{U} *output, i.e.,* U_1^* *is obtained by concatenating* $\tilde{U}_1, \tilde{U}_2, \cdots$ *, while* U_{∞}^0 *comes from* \cdots , \tilde{U}_{-1} , \tilde{U}_0 . Then for any $n = 1, 2, \cdots$ and any sub- σ -fields \mathcal{G}_1 , \mathcal{G}_2 we have

$$
|E_{\mathbf{f}_{\mathbf{m}}}^{\hat{\mathbf{f}}_{\mathbf{m}}}(\mathbf{P}^{\hat{\mathbf{U}}^{\mathbf{m}}}(\cdot \big| \mathcal{G}_{1}), \mathbf{P}^{\hat{\mathbf{U}}^{\mathbf{m}}}(\cdot \big| \mathcal{G}_{2})) - E_{\mathbf{f}_{\mathbf{m}}}^{\mathbf{F}}(\mathbf{P}^{\mathbf{U}^{\mathbf{m}}}(\cdot \big| \mathcal{G}_{1}), \mathbf{P}^{\mathbf{U}^{\mathbf{m}}}(\cdot \big| \mathcal{G}_{2}))| \leq El(\tilde{U}_{0}) - 1.
$$

Finally, we come to the main result. Let $\{X_i\}$ denote the projections from B^{∞} to B.

THEOREM. Let μ , ν be ergodic on B^{∞} . Let $\bar{f}(\mu, \nu) < \varepsilon^2$. Let μ be loosely Bernoulli. Then for all k sufficiently large we have $E_{\nu} \bar{f}_k(\nu^{X^k},\nu^{X^k}(\cdot | X^0_{-\infty}))$ $84\varepsilon/(1-\varepsilon)$.

PROOF. By inequality (1), with Y a trivial process, all we need to is find some k for which $E_v \overline{f}_k(\nu^{X^k}, \nu^{X^k}(\cdot | X^0_{-\infty})) < 42\varepsilon/(1-\varepsilon)$.

By [7, proposition 2.6] there exists a probability space (Ω, \mathcal{F}, P) and processes $\tilde{U}, \tilde{V}, U, V, M_{U}, M_{V}$ defined on it such that the following conditions hold:

(a) \tilde{U} , \tilde{V} have state space \hat{B} ; U, V have state space B and are obtained from \tilde{U} , \tilde{V} respectively, by concatenation as in Lemma 4; M_U , M_V have state space $\{0, 1\}$ and $(M_U)_i = 1$ if and only if U_i is the left-most entry of the \tilde{U}_i in which it lies; similarly for M_V , vis-a-vis V, \tilde{V} ,

(b) \tilde{U} , \tilde{V} are jointly stationary; $|P^{\vee} - \nu| < 2\varepsilon$; and $|P^{\langle U, M_{U}\rangle} - \lambda| < 2\varepsilon$, for some stationary λ on $B^{\infty} \times \{0, 1\}^{\infty}$ with B^{∞} -marginal μ ,

(c) $EI(\tilde{U}_0) = El(\tilde{V}_0) < 1/(1 - \varepsilon)$, and

(d) with probability one, for each i, the outputs $~\tilde{U}_i$, $~\tilde{V}_i$ begin with the same element of B.

Let \bar{X} , \bar{Y} be the processes which are the projections from $B^* \times \{0, 1\}^* \rightarrow B^*$,

 ${0, 1}^*$ respectively. Let τ represent the joint distribution $\tau = P^{(U,M_U)}$. By Lemma 2, for any m,

$$
E\overline{f}_m(P^{U^m}, P^{U^m}(\cdot \big| U^0_{-\infty}, (M_U)^0_{-\infty})) = E\overline{f}_m(\tau^{\bar{X}^m}, \tau^{\bar{X}^m}(\cdot \big| \bar{X}^0_{-\infty}, \bar{Y}^0_{-\infty}))
$$

$$
\leq E\overline{f}_m(\lambda^{\bar{X}^m}, \lambda^{\bar{X}^m}(\cdot \big| \bar{X}^0_{-\infty}, \bar{Y}^0_{-\infty})) + 6|\tau - \lambda|.
$$

From condition (b) above, $|\tau-\lambda| < 2\varepsilon$, so the second term on the right is bounded by 12 ε . As *m* gets large, the first term goes to zero by Lemma 3. (To see this, note that since \vec{B} is finite, the second term on the right side of (1) is identically zero. The first term on the right side of (1) goes to zero since μ is LB.) Hence we see that we may fix m so that

(2)
$$
E\bar{f}_m(P^{U^m}, P^{U^m}(\cdot \mid U^0_{-\infty}, (M_U)^0_{\infty})) < 12\varepsilon.
$$

Now Lemma 4 yields that

$$
E\hat{f}_m(P^{U^m}, P^{U^m}(\cdot \mid \tilde{U}^0_{-\infty})) \leq E\tilde{f}_m(P^{U^m}, P^{U^m}(\cdot \mid \tilde{U}^0_{-\infty})) + \varepsilon/(1-\varepsilon),
$$

since by hypothesis (c) $El(\tilde{U}) < 1/(1 - \varepsilon)$. Since the first term is bounded by 12ε from (2), we conclude that

(3)
$$
E\hat{f}_m(P^{i m}, P^{i m}) \cdot |\hat{U}^0_{-\infty}) \cdot 13\varepsilon/(1-\varepsilon).
$$

Since the entropies $H(\tilde{U}_0)$ and $H(\tilde{V}_0)$ are finite [4, theorem 4] and since (\tilde{U}, \tilde{V}) are jointly stationary, theorem 6.2 [6, p. 66] assures us that the conditional mutual information $I(U^m, \tilde{V}_{-\infty}^{-i} | \tilde{U}_{-\infty}^0) \rightarrow 0$ as *i* gets large. Hence

$$
\limsup_{i \to 0} E \bar{f}_m (P^{U^m} (\cdot | \hat{U}^0_{-\infty}), P^{U^m} (\cdot | \hat{U}^0_{-\infty}, \tilde{V}_{-\infty}^i)) = 0
$$

by exactly the same argument given in the proof of theorem 1 of $[3]$. Thus since $El(\bar{U}_0)-1 \leq \varepsilon/(1-\varepsilon)$ by condition (c) above, it follows immediately from Lemma 4 that

(4)
$$
\limsup_{i\to\infty} E\hat{f}_m(P^{\hat{U}^m}(\cdot \mid \tilde{U}^0_{-\infty}), P^{\hat{U}^m}(\cdot \mid \tilde{U}^0_{-\infty}, \tilde{V}^{-i}_{-\infty})) < \varepsilon/(1-\varepsilon).
$$

Therefore, by reapplying Lemma 3 for k any sufficiently large multiple of m , we get that

(5)
$$
E\hat{f}_k(P^{U^k}, P^{U^k}(\cdot \mid \hat{U}^0_{-\infty}, \tilde{V}^0_{-\infty})) < 27\epsilon/(1-\epsilon).
$$

(The terms on the right-hand side of Equation (1) are bounded above in (3) and (4).)

On the other hand, both $E f_k(P^{U^k}(\cdot | \hat{U}^0_{-\infty}, \hat{V}^0_{-\infty}), P^{\hat{V}^k}(\cdot | \hat{U}^0_{-\infty}, \hat{V}^0_{-\infty}))$ and

 $E^{\hat{i}}_{k}(P^{\hat{U}^{k}}, P^{\hat{V}^{k}})$ are dominated by $E^{\hat{i}}_{k}(\tilde{U}^{k}, \tilde{V}^{k}) \leq E[(l(\tilde{U}^{k}) + l(\tilde{V}^{k}) - 2k)/(2k)]$ $\varepsilon/(1-\varepsilon)$. From these two bounds and (5), the triangle inequality yields that

(6)
$$
E_{f_k}^{\hat{f}}(P^{\hat{V}^k},P^{\hat{V}^k}(\cdot \mid \tilde{U}^0_{-\infty},\tilde{V}^0_{-\infty})) < 29\varepsilon/(1-\varepsilon).
$$

Since $E\bar{f}_k(P^{\vee k}, P^{\vee k}(\cdot | V^0_{-\infty})) \leq E\bar{f}_k(P^{\vee k}, P^{\vee k}(\cdot | \tilde{V}^0_{-\infty}))$ and since Lemma 4 yields $E\bar{f}_k(P^{V^k}, P^{V^k}(\cdot | \hat{V}^0_{-\infty})) \leq E\hat{f}_k(P^{V^k}, P^{V^k}(\cdot | \hat{V}^0_{-\infty})) + \varepsilon/(1-\varepsilon)$, we apply (6) to conclude that

(7)
$$
E\bar{f}_k(P^{\vee k}, P^{\vee k}(\cdot | V^0_{-\infty})) < 30\varepsilon/(1-\varepsilon).
$$

Finally, by Lemma 2,

$$
E_{\nu}\bar{f}_{k}(\nu^{X^{k}},\nu^{X^{k}}(\cdot | X^{0}_{-\infty})) \leq E\bar{f}_{k}(P^{\vee k},P^{\vee k}(\cdot | V^{0}_{-\infty})) + 6|P^{\vee} - \nu|
$$

$$
\leq 42\varepsilon/(1-\varepsilon),
$$

since the term $|P^{\vee} - \nu|$ is less than 2ε by condition (b) above and the previous term is bounded in (7).

REFERENCES

1. J. Feldman, *Non-Bernoulli K-automorphisms and a problem of Kakutani,* Isr. J. Math. 24 (1976), 16-38.

2. A. Katok, *Change of time, monotone equivalence, and standard dynamical systems,* Doklady Akad. Nauk 223 (1975), 789-792.

3. John C. Kieffer, *A direct proof that VWB processes are closed in the d-metric,* Isr. J. Math. 41 (1982), 154-160.

4. Roman A. Murieka, The *maximization of entropy of discrete denumerably valued random variatjles with known mean,* Ann. Math. Stat. 43 (1972), 541-552.

5. D. Ornstein and B. Weiss, *Finitely determined implies very weak Bernoulli,* Isr. J. Math. 17 (1974), 94-104.

6. W. Parry, *Entropy and Generators in Ergodic Theory,* W. A. Benjamin, New York, 1969.

7. B. Weiss, *Equivalence of measure preserving transformations,* Lecture Notes, The Institute for Advanced Studies, The Hebrew University of Jerusalem, 1975.

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MISSOURI-ROLLA ROLLA, MO 65401 USA

DEPARTMENT OF MATHEMATICS TEXAS A & M UNIVERSITY COLLEGE STATION, TX 77843 USA